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Abstract

We present work towards an end-to-end system for play-
ing the game Super Hexagon1 on a mobile phone. Unlike
previous methods, our approach captures real-time video
from a webcam observing the device screen, rather than
from low-level operating system display buffers. Because
it uses only visual observations of the game device, our sys-
tem does not assume anything about the device itself such
as its operating system, screen size, or resolution.

The video processing pipeline is split into two stages:
First, it isolates the phone screen from video using a com-
bination of thresholding, RANSAC and perspective trans-
formations. Second, it extracts game features from a single
frame using adaptive thresholding, convolutional blob de-
tection, and ray casting.

This process is reliably able to locate the phone on a
uniform white background. To correct for perspective dis-
tortion of the screen image, we assume the phone is in land-
scape orientation relative to the camera. Additionally, we
are able to locate the player character and the closest ob-
stacles very reliably. Although the game runs at 60 frames
per second, our maximum processing speed is around 20
frames per second, with a latency of 2-3 frames. The la-
tency of the system comes primarily from video encoding in
the webcam and decoding on the computer. Using the ex-
tracted game features, we use a rule-based AI to move the
player in the optimal direction to avoid the nearest obstacle.

1. Introduction

Game-playing agents are of interest to artificial intelli-
gence researchers since researchers are often able to re-
purpose the techniques pioneered for solving open-ended
game dilemmas for solving other traditionally-hard prob-
lems. While most research in game-playing agents centers
on the artificial intelligence tasks and uses game APIs to
manage the game state directly, in our project we are investi-

1Super Hexagon. Terry Cavanaugh. 2012. Video Game.

gating a system where the game-playing agent receives only
the visual output of the game, as would a human player. The
techniques involved in playing the game as a human would
could allow the system to play other games in the future,
even if they only exist as mobile apps.

We focus specifically on Super Hexagon, a fast-paced
mobile and PC game where the player must pilot a small
character through the scene to avoid geometric obstacles
(Figure 1). We chose this game because it has relatively
simple and repetitive 2D features, only one degree of free-
dom (circular rotation around the hexagon in center of the
screen) and the only objective is staying alive by avoiding
obstacles. As a result, designing an AI to play the game is
relatively simple (compared to other video games), but the
games fast-paced nature still makes it an interesting com-
puter vision challenge. All objects on screen except the
player character rotate around center with the same angular
speed, though the rotation changes randomly as the game
progresses.

We present both a video processing pipeline to isolate the
phone screen from webcam video and extract the relevant
features as well as a decision-making AI to play the game
based only on these extracted features. For testing purposes,
we use both pre-captured gameplay videos and live video
feeds of a phone screen. We enable the AI to play the game
directly on the phone by simulating keypresses over a blue-
tooth connection.

2. Background

2.1. Previous Work

There are several challenges associated with real-time
video feature extraction for game-playing: how to recog-
nize an object of a particular size and shape in a possibly-
crowded video frame, how to determine the orientation of
that object in order to correct for perspective transforma-
tion, and finally how to do so quickly enough to keep pace
with gameplay.

Due to the visual simplicity of Super Hexagon, a rela-
tively simple thresholding process allows us to separate the
foreground features from the background. Current state-
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Figure 1. Super Hexagon. The player, the small triangle near the
center of the screen, must avoid the impending walls.

of-the-art algorithms use convolutional neural networks
(CNNs) for object recognition; we had originally consid-
ered this approach as well but decided against it due to lack
of annotated training data. Additionally, since we only look
for one object in the frame, a phone, it did not make sense
to use powerful CNNs that are built to differentiate between
hundreds or thousands of object classes. However, there
may be ways to reuse some of the features that make CNNs
fast at processing data once they have been trained.

One phone-isolation procedure we investigated makes
use of OpenCVs contour-finding function for binary im-
ages, which is based on the algorithm proposed by Suzuki
and Abe[4]. This is an iterative pixel-labeling algorithm that
attempts to connect groups of 1-pixels that surround, or are
surrounded by, groups of 0-pixels. The algorithm performs
a raster scan of the image and locates possible pixels for a
border, which is as simple as detecting whether the pixel
has value 1 while a neighboring pixel has value 0. Next, the
pixel is given an integer label to keep track of which border
it belongs to. With each subsequent starting pixel a decision
is made whether to add it to an existing border or create a
new border with a new label. The algorithm also checks
when border segments connect. If its determined that two
segments are part of the same border, pixel labels are reas-
signed to make them one border.

The second phone-isolation method we tried relies on
the background subtraction algorithm proposed by Kaew-
TraKulPong and Bowden[2]. Assuming that the phone is
stationary, the foreground of the image (the phone screen in
our project) will change more often than the background.
Hence, we can use the changes between frames to update
and threshold a reference image. The result of the algo-
rithm is a binary segmentation of the image that highlights
moving objects. The largest downside of this approach is
that it cannot handle changes in illumination in the scene.

We also found two existing projects that attempted to
play Super Hexagon[5][3]. However, both focus more on

the game AI than the video processing steps. In particu-
lar, both projects rely on hacking the Super Hexagon source
code and OS data structures to gather game state. As a re-
sult, they are less portable and less generally applicable than
our approach.

As for the specific video processing steps, the more com-
plete project, led by Valentin Trimaille, binarizes the im-
age to remove background and detects obstacles by casting
rays from the center of the screen until they hit an obstacle
or edge of screen. This is similar to our approach. Their
approach to finding the player character relies on its trian-
gular shape; they detect all contours and then assume the
only contour with 3 points is the player. This approach
does not work well for us because noise in the binariza-
tion/thresholding process can create false positives. Our ap-
proach, described in section 3.2.2, is much more robust.

2.2. Our Contributions

As described in the previous section, the prior work
in Super Hexagon AIs was based on acquiring the game
video from low-level display drivers, an approach that does
not generalize well between different devices and operating
systems. This approach also does not work well for mobile
or console games, as there is no API to extract single frames
from their graphics processors. Mobile games already hold
a significant market share and continue to gain in popularity,
so it is imperative to develop an alternate video acquisition
and processing method, which is the purpose of our project.

We have attempted to create a generic video-processing
workflow that can be used to extract relevant features from
games played on a mobile phone over a webcam video
stream. Although we are developing this process specifi-
cally for Super Hexagon, we believe that a majority of the
feature extraction components can be generalized to play
other 2D games.

3. Solution

3.1. Summary

Our game-playing process (Figure 2) consists of three
major steps: 1) isolating the phone screen from webcam
video feed, rectifying the phone screen to correct for per-
spective transformation and removing the background (red
border), 2) extracting the player character and obstacles
from each frame (blue border), and 3) choosing the best di-
rection to move based on the location of the player in rela-
tion to the obstacles (green border). These steps correspond
to the domains of computer vision, image processing, and
AI respectively.



Figure 2. Pipeline for playing Super Hexagon.

3.2. Isolating the Phone and Correcting for Perspec-
tive

Our original goal was to devise a procedure that can lo-
cate the phone screen in any orientation and position within
the frame, even with other objects in the field of view.
However, if the phone orientation is completely unknown,
we encounter perspective ambiguity in trying to recover its
orientation. To simplify the problem, we assume that the
phone is in landscape orientation relative to the camera, and
that it is stationary. However, to keep the system somewhat
flexible, we do not assume that the plane of the phone screen
is aligned with the image plane of the camera, and we allow
small rotations of the phone.

We implemented two different systems for identifying
the boundaries of the phone screen in a video stream: first,
a simple thresholding scheme; and second, a system us-
ing background subtraction to locate the animations on the
phone screen. After finding the contours of the screen, we
use RANSAC [1] to find the corners of the best-fit quadri-
lateral.

To overcome the difficulties of truly generic phone-
screen detection, we make two simplifying assumptions for
the thresholding approach. First, we assume that the phone
is the only object in view of the camera and it is placed on
a uniform light background, such that thresholding is an ef-
fective means of isolating the silhouette of the phone. Sec-
ond, we assume that the phone is in landscape orientation,
though it need not be perfectly axis-aligned. The threshold-

ing algorithm proceeds as follows:

1. Convert the image to grayscale

2. Binarize using an inverted threshold function, which
sets

new pixel value =

{
255 if pixel value < 40

0 otherwise

This has the effect of discarding the light-colored back-
ground and locating the silhouette of the phone.

3. Find all closed contours in the frame using OpenCVs
findContours function, which uses [4]. Since the
phone is the only object in the frame, the resulting con-
tour gives its silhouette.

The thresholding approach to locating the phone is sim-
ple and fast, though it stipulates that the phone is on a light,
uniform background. To remove the background assump-
tion, we can instead assume that the phone is stationary,
and that its screen will display vibrant animations during
gameplay. Because the contents of the screen are in mo-
tion, we locate the screen using a background subtractor.
Considered simply, the background subtractor maintains a
reference image over time, then subtracts each new frame
from this reference image and thresholds the result to locate
the foreground region. We use OpenCVs BackgroundSub-
tractorMOG, which implements the mixture-of-Gaussians
background subtractor as proposed by [2].

The above methods to isolate the phone screen yield the
set of points along the contour. To remove the background
of the frame and align the phone screens contents to the
axes of the image, we apply a RANSAC-based approach to
recover the four corners of the screen. Using these corners,
we can warp the screen contents to fill the frame. The algo-
rithm follows:

1. Using RANSAC, find four points along the perimeter
of the contour that enclose an area closest to the area of
the original contour. The RANSAC procedure tracks
the four best points over 1000 iterations. In each itera-
tion,

(a) Choose four points at random from the contour
(b) Calculate the area enclosed by the 4 points
(c) If the area is greater than the current best set of

points, replace the best set of points

2. Maintain a ring-buffer of the recovered quadrilateral,
and take the average of the buffer to be the current
screen quadrilateral, a projected rectangle.

3. Given the four corners of the screen and the known
positions of the image frames corners, we find the
perspective transformation to align the contents of the
phone screen to the image frame. Images: isolated.png



Figure 3. Process of phone screen isolation. (a) is the original image, with phone contour shown in red, and ground truth screen quadrilateral
shown in green. (b) is the thresholded image. (c) Is the recovered screen image.

3.3. Extracting Features

Once the phone screen is isolated and corrected for any
perspective transformation, we normalize its resolution and
extract the relevant game features. First, we use an adaptive
threshold to binarize the image and isolate the foreground –
the player characters and obstacles – from the background.
The webcam performs automatic exposure adjustments as
the screen content changes, though it usually lags signifi-
cantly, so our method must be effective in a very wide range
of lighting situations. Starting with a grayscale image, it
calculates the median brightness value and uses that as a
noise-resistant estimate for the background color. Then, the
threshold was set empirically to a brightness 1.5x this me-
dian value.

At this point, only the player character and obstacles re-
main, and the next step is to determine their exact location.
We first detect the player character, which conveniently is
always about the same size and stays near the center of the
game. We created a blob detector by convolving a 30x30
pixel kernel with the center 120x120 pixels in the image.
The kernel has positive weight in the central region cor-
responding to the expected size of the player, and nega-
tive weight surrounding. This way regions larger than the
player will receive negative weights after convolution, and
the pixel with highest weight will be at the center of the
player, providing excellent localization. Results can be seen
in Figure 11. After locating the player, the player is masked
out to ensure it doesnt interfere with obstacle detection.

In an effort to make the processing pipeline as quick as
possible, we only consider the closest obstacles in each di-
rection from the player character with the assumption that
the AI will react quickly enough that lookahead isnt nec-
essary. Unfortunately in practice we found that this wasnt
achievable. We project rays from the center of the screen in
10 degree increments and keep track of the length of each
ray at the time it meets the first obstacle. In the early levels,
its possible that a ray reaches the edge of the screen before
hitting an obstacle, in which case we consider the of the
screen to be an obstacle even though it doesnt move toward
the player. In testing we found that this was preferable to
capping the measured distances (such as by restricting the

rays to a circle inscribed in the phone screen, which thus
discards potentially useful information from the sides of the
screen). The angle and length of each ray is used by the AI
to determine the proper action for the frame.

3.4. Game AI

Developing a robust game AI was not the focus of our
project. Our goals instead were to develop a simple AI that
would be easy to reason about, and adequately showcase the
rest of our pipeline.

The game AI is stateless and can choose one of three
options (move counterclockwise, move clockwise, or stay
still) in each frame. Because we did not introduce any
lookahead behavior, the AI does poorly with obstacles that
require advanced planning. This also leads to it being ex-
tremely susceptible to latency, as reaction time is the biggest
factor in performance. We use pre-measured values for
player rotation speed and obstacle movement speed to deter-
mine how far the player can move in either direction with-
out dying. Then, we move in the direction with the deepest
reachable opening. That is, the AI chooses to move toward
the angle with the furthest distance to an obstacle, restrict-
ing our search to only angles that are feasible.

This was an attempt to mimic the goal-oriented play of
human players, but the AI is significantly hamstrung by la-
tency and its shallow lookahead.

4. Experiments
We tested our video processing pipeline using both

live video feeds for qualitative results (Figure 4) and pre-
captured video for repeatable quantitative tests of the dif-
ferent methods. To assess the AIs performance, we used
live video to see how long the AI could play independently
and pre-captured video of a human player to assess the dif-
ferences between AI and human performance.

4.1. Isolating the Phone

To test our phone-isolation algorithm we compared its
output to hand-annotated ground truth locations of the cor-
ners of the screen in four test videos (Figure 5). We used
the Jaccard Index to determine the amount of similarity be-



Figure 4. Experimental setup. The phone, right, is filmed by the
webcam, which is connected to the laptop. In this test, the laptop is
drawing the extracted bounding box on the raw webcam footage.

tween the hypothesized and actual screen locations. A ratio
of one would indicate that the algorithm had perfectly lo-
cated the screen, and less than one would indicate an imper-
fect match.

After recovering the screen quadrilateral, we use three
metrics to evaluate the performance of the two phone-
screen isolation methods: the Jaccard index of the recovered
quadrilateral, the average distance of the corners rectangles
from those of the ground truth, and the average corner ve-
locity, which we define to be the average distance the re-
covered quadrilateral’s corners move between each frame
of the video. The Jaccard index, defined as

J(H,G) =
| H ∩G |
| H ∪G |

where H is the hypothesized quadrilateral, and G is the
ground truth quadrilateral. gives an idea of the correctness
and completeness of the isolated screen area, and a value
close to 1 is ideal. The corner distances should be low for
correct screen recovery, and can indicate screen rotations
and skew. Because our AI needs stable video frames, we
also strive for low corner velocity.

Using ring-buffer sizes of 1, 35, and 50 frames, we
present the above metrics in Figures 6 and 7. Both screen-
isolation methods offer relatively high Jaccard Indices, and
low corner distances for all video files except file 1. In video
file 1, the phone is sufficiently rotated away from landscape
orientation that the recovered screen-bounding quadrilateral
has ambiguous vertex order; the vertex-ordering procedure
cannot accurately determine which corners correspond to
the four ground-truth corners. The high corner distances for
file 1 reflect the incorrect vertex correspondences, illustrat-
ing the importance of our assumption that the phone is in
landscape orientation.

Despite the similar Jaccard and corner-distance scores
on the other files, we conclude that the thresholding method
produces more reliable estimates of the phone screen for

Figure 5. Screenshots from the four videos used to test bounding
box extraction. Referred to by the numbers 1-4, clockwise from
top right, in the tables below.

Figure 8. The numerical scores used to generate the graphs in Fig-
ure 6, with standard deviations.

the purposes of the AI agent. The background-subtraction
method suffers from higher corner velocity, due to its inabil-
ity to select the corners of the game screen, which contain
stationary UI elements. This higher corner velocity corre-
sponds to much more jitter in the recovered image, which
suggests motion on the phone screen even where there is
none.

4.2. Extracting Features

Feature extraction proved to be very reliable. It was
evaluated on a 50 second webcam test video (a recording
of a human playing the game, using our normal experi-
mental setup) by comparing the algorithms results to hand-
annotated player positions. Results can be seen in Figure
10



Figure 6. Top to bottom: Jaccard Index, corner distance, and corner velocity for the thresholding method in each video file and (a) a buffer
size of 1 frame, (b) a buffer size of 35 frames, and (c) a buffer size of 50 frames.

Figure 7. Top to bottom: Jaccard Index, corner distance, and corner velocity for the background subtraction method in each video file and
(a) a buffer size of 1 frame, (b) a buffer size of 35 frames, and (c) a buffer size of 50 frames.

The player detector reports no detection when no pixels
pass a threshold. This was the most common failure mode
for the algorithm, and only occurred when the player was
touching a wall and was thus difficult to isolate. True false
detections were much less common, and usually seemed to
be the result of camera noise or the camera refocusing.

Measuring the distances to obstacles was even more reli-
able, since the obstacles are larger and slower moving than
the player character. We didnt notice any mistakes in our
test videos. This step initially comprised a significant frac-
tion of our processing time, but we found that reducing the
number of rays cast and increasing the stride to 5 pixels

made the cost negligible and didnt significantly impact the
performance of the AI.

4.3. Game AI

Finally, we evaluated the entire system by measuring its
ability to play the game in real time. Our results were sig-
nificantly better than a random player, but worse than wed
hoped. We also compare the system to a human player
in Figure 12. For this test the human player also played
through the webcam, to mimic the latency faced by the AI
and make the comparison as fair as possible (the same hu-
man can consistently score greater than 60s on the original



Figure 9. The numerical scores used to generate the graphs in Fig-
ure 7, with standard deviations.

Frames Percent
Correctly identified 1302 93.7%

Incorrectly identified 24 1.7%
No match 64 4.6%

Figure 10. Player character localization accuracy.

Figure 11. Experimental setup for the integration tests. The ar-
duino and bluetooth module at bottom left were used to transmit
controls to the phone.

No Movement Random Movement This Paper Human
Mean (30 trials) 3.52± 0.19 3.35± 0.20 4.29± 0.27 9.09± 0.53

Figure 12. Player character localization accuracy.

game, so this is a significant handicap).
The AI tended to fail in predictable ways. Super

Hexagon often generates walls with small openings, and the
system almost never had enough time to escape these if it
didnt start near the opening. The latency of the game also
led the player to overshoot its openings very often: in the 2-
3 frames between when the system decides to stop moving
and when the game actually reacts, the player character has
usually passed the target location.

5. Conclusions
In this paper we sought to play Super Hexagon from a

webcam video feed. We attempted to make the first stage
of our pipeline, phone-localization and perspective correc-
tion, as generic as possible. However, we had to make
several simplifying assumptions about background content
and phone orientation. With these simplifying assumptions
we were able to correctly and reliably identify the phone
screen.

In the second stage of our pipeline, we processed the
transformed phone screen to extract relevant game features.
This stage showed strong robustness to noise in the image,
and proved more reliable than the first stage.

Finally, we developed a simple AI to use our extracted
features to play the game. Developing a robust game AI
was not the focus of our project. Our goals instead were to
develop a simple AI that would be easy to reason about, and
adequately showcase the rest of our pipeline. It achieved
results significantly better than random chance, but much
worse than our human baseline.

Given additional time, we would reduce the pipeline la-
tency, add state to the AI game-playing agent, and develop
a more robust and efficient method for localizing the phone
screen.

Our final processing pipeline has throughput of around
25 FPS, which gives a per-frame processing time of 40 ms.
However, the sum of webcam processing time, transfer la-
tency and video decode time on the computer add up to
greater than 100ms. As a result, our AI is receiving infor-
mation that is around ten game-frames out-of-date. Since
latency is the biggest detriment to AI performance, reducing
the latency could vastly improve the game-playing results.
Using camera systems designed for real-time applications
such as robotics or surveillance could be a convenient av-
enue for reducing latency.

For simplicity, we designed the game AI to be state-
less and only take the closest obstacle into account when
choosing whether to move and which direction to move.
This is inefficient in most situations, because moving in the
suboptimal direction may actually put the player in a bet-
ter location to deal with the next layer of obstacles. We
would have liked to enhance the AI to use more sophisti-
cated path-planning algorithms, such as Dynamic-A* that
update immediately based on the appearance of new obsta-
cles [Likhachev]. A predictive AI may also help mitigate



some of the processing latency by extracting more informa-
tion from each frame such that it plans motion for several
frames ahead rather than for the current frame.

Lastly, we would like to devise a more efficient and de-
terministic method of locating the phone screen in the video
stream. Our algorithm uses a bounding contour [Suzuki] to
locate the phone, followed by RANSAC to turn that into
the best bounding rectangle. RANSAC causes some noise
in the algorithm, which we compensate for by averaging the
bounding rectangle over several frames.

While our AI agent did not perform as we had expected,
we were able to use computer-vision techniques to begin
a system for playing unmodified games on mobile devices.
With reduced latency and more robust video capture tech-
niques, we hope that our processing framework could serve
as a platform for future advances in game-playing agents.

The code for our project is located at:
https://bitbucket.org/ottobonn/super-haxxagon/
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